Context-related frequency modulations of macaque motor cortical LFP beta oscillations.

نویسندگان

  • Bjørg Elisabeth Kilavik
  • Adrián Ponce-Alvarez
  • Romain Trachel
  • Joachim Confais
  • Sylvain Takerkart
  • Alexa Riehle
چکیده

The local field potential (LFP) is a population measure, mainly reflecting local synaptic activity. Beta oscillations (12-40 Hz) occur in motor cortical LFPs, but their functional relevance remains controversial. Power modulation studies have related beta oscillations to a "resting" motor cortex, postural maintenance, attention, sensorimotor binding and planning. Frequency modulations were largely overlooked. We here describe context-related beta frequency modulations in motor cortical LFPs. Two monkeys performed a reaching task with 2 delays. The first delay demanded attention in time in expectation of the visual spatial cue, whereas the second delay involved visuomotor integration and movement preparation. The frequency in 2 beta bands (around 20 and 30 Hz) was systematically 2-5 Hz lower during cue expectancy than during visuomotor integration and preparation. Furthermore, the frequency was directionally selective during preparation, with about 3 Hz difference between preferred and nonpreferred directions. Direction decoding with frequency gave similar accuracy as with beta power, and decoding accuracy improved significantly when combining power and frequency, suggesting that frequency might provide an additional signal for brain-machine interfaces. In conclusion, multiple beta bands coexist in motor cortex, and frequency modulations within each band are as behaviorally meaningful as power modulations, reflecting the changing behavioral context and the movement direction during preparation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike Firing and IPSPs in Layer V Pyramidal Neurons during Beta Oscillations in Rat Primary Motor Cortex (M1) In Vitro

Beta frequency oscillations (10-35 Hz) in motor regions of cerebral cortex play an important role in stabilising and suppressing unwanted movements, and become intensified during the pathological akinesia of Parkinson's Disease. We have used a cortical slice preparation of rat brain, combined with concurrent intracellular and field recordings from the primary motor cortex (M1), to explore the c...

متن کامل

Encoding of movement direction in different frequency ranges of motor cortical local field potentials.

Recent studies showed that the low-frequency component of local field potentials (LFPs) in monkey motor cortex carries information about parameters of voluntary arm movements. Here, we studied how different signal components of the LFP in the time and frequency domains are modulated during center-out arm movements. Analysis of LFPs in the time domain showed that the amplitude of a slow complex ...

متن کامل

Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus.

Event-related changes of brain electrical rhythms are typically analysed as amplitude modulations of local field potential (LFP) oscillations, like radio amplitude modulation broadcasting. In telecommunications, frequency modulation (FM) is less susceptible to interference than amplitude modulation (AM) and is therefore preferred for high-fidelity transmissions. Here we hypothesized that LFP rh...

متن کامل

Synchronization in monkey motor cortex during a precision grip task. II. effect of oscillatory activity on corticospinal output.

Recordings from primary motor cortex (M1) during periods of steady contraction show oscillatory activity; these oscillations are coherent with the activity of contralateral muscles. We investigated synchronization of corticospinal output neurons with the oscillations, which could provide the pathway for their transmission to the spinal motoneurons. One hundred seventy-six antidromically identif...

متن کامل

Cross-frequency interaction of the eye-movement related LFP signals in V1 of freely viewing monkeys

Recent studies have emphasized the functional role of neuronal activity underlying oscillatory local field potential (LFP) signals during visual processing in natural conditions. While functionally relevant components in multiple frequency bands have been reported, little is known about whether and how these components interact with each other across the dominant frequency bands. We examined th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 22 9  شماره 

صفحات  -

تاریخ انتشار 2012